There are elements of fascism concealed within the marketing strategies used to sell the Information and Communications Technologies (ICT) revolution. Under the logic of such strategies the ideals of progress and perfection inevitably lead to those of freedom and creativity. It is a teleological and technological destiny that is unavoidable for all good consumers. Although many of us find ourselves with no particular desire to be good consumers, and while we share doubts concerning the various prices that such actions will extract, for those of us with the means there will, under the present system, always be the lure of the next hi-tech fix. The hi-tech fix that will eventually and ultimately cure all of our ills if only we keep purchasing the latest, smartest, fastest high-tech consumables entombed in the smallest, sleekest, ‘sexiest’ casing. Throughout his life’s work William S. Burroughs never tired of explorations and exhortations warning of the dangers of such fixes. According to Burroughs the equation is always the same – control is what a dealer wants from and over a user.

It is in this sense, in terms of control, power and manufactured need that we can locate the fascism concealed within the marketing strategies of the leading edge. In short the kind of fascism that we are considering is, as Foucault once wrote “the fascism in us all, in our heads and in our everyday behaviour, the fascism that causes us to love power, to desire the very thing that dominates and exploits us”. It is the kind of fascism that the ego feeds

“the fascism in us all, in our heads and in our everyday behaviour, the fascism that causes us to love power to desire the very thing that dominates and exploits us”.

Lowtech
Escape from the Tyranny of the Leading Edge

SIMON GRIFFITHS
upon, the myopic, the self-centred, the fearful, that which distrusts the world and that which wants everyone else to distrust the world; infecting everyone that it can lay hold of with its own brands of jealousy, greed, hate and fear. Such emotions may appear to belong to a different world from the pristine future conjured up by advertising campaigns, but listen to the childlike mantra of the ego, the voice within that such strategies depend upon: “I need a Nokia 7250, if I don't get one, if everyone else has got one and I haven't then they'll all be texting photos and I won't be able to etc, etc”.

Ask yourself what form this voice takes within your own mind, ask yourself whether such manufactured need can ever exist without the emotions of jealousy and greed, both of which are ultimately fed by fear.

As we have already touched upon in our reference to Foucault, the fascisms interrogated by Gilles Deleuze and Felix Guattari in Anti-Oedipus: Capitalism and Schizophrenia are the fascisms of our everyday lives, the micro-fascisms that are implicit in everyday relations of power and domination. Whilst this essay does not have the scope to satisfactorily explore this conception of fascism in relation to the marketing strategies of the ICT revolution, it is important to at least sketch out the connections. For Deleuze and Guattari, fascism is a reactionary form of desire, desire that desires its own repression. Following Wilhelm Reich, they seek an explanation for the fact that the masses in Nazi Germany actually desired fascism. According to them modern society oscillates between two poles, the fascist-paranoid pole and the revolutionary-schizophrenic pole. From this conception of society the emotions of jealousy, greed and fear can be seen as reactionary desires drawn towards the paranoid pole of the continuum. The logic for this being that jealousy, greed and fear all rely upon a negative concept of desire as lack; in other words they all rely upon the formulation that you can only desire that which you don't possess. In contrast Deleuze and Guattari's conception of desire does not depend upon such negative Freudian notions. For them desire is a creative and productive affair. At society's revolutionary-schizophrenic pole desire produces and creates for the sake of production and creation; it does not desire what it lacks, it does not want what it does not possess, it merely produces and creates.

However as modern society tends towards the fascist-paranoid pole, social repression entraps desire within the reactionary position of desiring that which it lacks. This is the reactionary position upon which the marketing strategies of the ICT revolution feed. In order to maintain and stimulate artificial levels of consumption, and in turn economic growth, such marketing campaigns use the illusions of progress and perfection to sell consumers what they will always, sooner or later, lack – the latest upgrade, the most recent model of whatever line of high-tech consumable they choose to buy into. The nature of such essentially disposable products also means that once we have bought into them we tend to become trapped in an upgrade cycle from which we cannot escape. Just think for a moment about giving up or downgrading your mobile phone or your personal computer. While some may deny that such a cycle is disempowering, there are other more visible, real world effects caused by the ICT revolution and its marketing strategies. And by such effects we should refer not to their effect on the lived daily realities of those of us fortunate enough to be able to afford the entrance fee to this exclusive club, but rather to the waste products that they generate and the ensuing environmental costs.
The relentless drive of the two-year upgrade cycle and the two-month leading edge are not only responsible for the endless march of progress, they also bear responsibility for some rather more unsavoury and usually unmentioned side effects. It does not make pleasant reading and it is hardly surprising that such facts do not feature in the sanitised digital utopia that we are currently being sold. Few manufacturing processes come close to the high-tech electronics industry in terms of the extent of their environmental impact. Weight for weight the production of computer chips causes more damage to the environment than the production of cars. A large proportion of this damage is caused by the amount of natural resources that are required by the plants in which computer chips and components are manufactured. On top of this there is also the variety and quantity of toxic chemicals that are used during the production process. “It is widely known that the production of computer components – such as semiconductors, printed circuit boards, disk drives and monitors – use significant amounts of toxic gases, acids and industrial solvents”. Such chemicals include lead, mercury, cadmium, chromium VI and brominated flame retardants, all of which are toxic to human bodies. Lead can damage the central nervous system; methylated mercury causes damage to the brain; cadmium chloride may cause cancer following prolonged exposure, while such exposure is made more likely by cadmium’s 30-year half-life and the fact that it accumulates in the kidneys; chromium VI is considered genotoxic and has the potential to damage the DNA; polybrominated diphenylethers may act as endocrine disrupters and Polybrominated Biphenyls may increase the risk of stomach and lymph cancers. The most striking thing about such a cursory examination is not the list of possible damage to human bodies but rather the repetition of the modal auxiliary ‘may’, which perhaps goes to highlight the extent to which innovation in the manufacturing process is currently outstripping concern for or research into the safety of such innovation.

What is not in doubt however is that there is a contradiction inherent to the ‘clean rooms’ where computer chips are manufactured. While the ‘clean room’ ensures that computer chips are kept free from foreign bodies, the toxic chemicals that are used during the manufacturing process cause workers at semi-conductor plants to suffer from cancer clusters, miscarriages and birth defects at a higher rate than normal manufacturing workers. As a result of this “IBM and National Semiconductor have been involved in lawsuits filed by several hundreds of their employees related to illnesses – primarily cancer and birth defects – that claimants assert are due to working with chemicals in the semiconductor industry”. The reasons behind such extensive and prolonged exposure to highly toxic chemicals can be laid upon what is often referred to as corporate greed or negligence, but what can more accurately be referred to as the profit motive. More specifically workers and the environment suffer from such exposure because of the high-tech industry’s success in preventing safety regulation and unionisation from encroaching upon their profits; often using their position as the largest growth sector in the global economy to intimidate governments and communities into giving them concessions that include a lack of safety regulations; regulations which would only serve to hinder the manufacturing process. For the communities that surround semi-conductor plants such concessions often result in the pollution of the local environment with toxic, bioaccumulative substances, with the most recognised impact being the extensive contamination of groundwater. The environment also suffers because
of the high-tech industry's intensive consumption of natural resources. As the Western nations have become more aware of the damage that these production plants cause to their local environment, high-tech industries have tended to relocate their operations to the developing world. However, relocation has not lead to a re-evaluation of past mistakes and as a result “many of the environmental and health problems that have been documented in Silicon Valley are beginning to emerge in these other areas”.

Finally there is the issue of the huge amounts of electronic waste (e-waste) that are created as by-products of the two-year upgrade cycle. E-waste is the fastest growing and the most toxic waste stream in the industrial world. The manner in which it is dealt with is therefore of consequence to both the environment and communities living near disposal sites. Considering the amount of hazardous substances contained within e-waste it is hardly surprising that the disposal of e-waste through incinerators and landfills comes with its own set of problems. These include the emission of dioxins and furans when e-waste is incinerated, and the leaching and evaporation of various hazardous substances contained within e-waste when it is placed in landfills. In addition, the recycling of e-waste is often impractical due to the high cost of handling toxic substances. The net result of this seems to be that major re-evaluations need to be made in terms of the sustainability of high-tech industries. It should not however come as a surprise to learn that in light of the European Commission’s directives concerning Waste Electronics and Electrical Equipment (WEEE) and Restrictions on Hazardous Substances (ROHS), the US Trade Representative, prompted by US electronics companies, has lobbied extensively against the adoption of the European WEEE and ROHS initiatives as a threat to trade and so illegal according to the World Trade Organisation. When trade and economic growth are the only factors considered to be of importance, over and above environmental sustainability and human health, then we have to ask ourselves whether the high-tech industry can ever become sustainable within the current economic model.

In contrast to the speed, efficiency and power maxims of the Leading Edge, the model of Lowtech operates according to a somewhat different logic. Lowtech involves acquiring old computers that have either been donated or put out in the trash by their previous owners following their latest upgrade. At the level of software it also involves migrating from proprietary software to open source or free software. Old machines do not work in the same manner as new ones and as a result the process of Lowtech is one that works in fits and starts; to put it another way, Lowtech works only through and by breaking down. Although this process of breaking down can be extremely frustrating, it is a frustration that ultimately leads to self-empowerment. Consider the example of leading edge technology when it breaks down: Frustrations begin on the Technical Support helpline, with the twenty-minute wait to get through to a ‘technician’. They continue with the indignity and disempowerment inherent in the process of following orders and instructions. You are offered no explanations and you gain little understanding, your role is merely to click the mouse where you are told and then report the computer’s reactions to the technician. You are no more than a relay and you can sense the technician’s growing frustration as you are unable to carry out commands at the speed that the technician prefers to work at. It is an experience that generally culminates in the distasteful feeling that the more technical aspects of com-
puters are best left to ‘the experts’. Such hierarchisation of knowledge, where certain sections of the population are excluded from certain types of knowledge, is another factor contributing to the relations of power, control and domination that surround the technologies of the Leading Edge.

It is also a hierarchisation of knowledge that Lowtech actively eschews with its hands on, or rather hands inside, approach to computer hardware. Diverging from such hierarchical methods, the process of Lowtech aims to be egalitarian. While there are, within the open source and free software communities, people with differing levels of programming experience and knowledge, Lowtech does not encourage or engage in the kind of guru worship that places those with more knowledge upon pedestals. Specifically, the ethos of Lowtech treats those who know something but are unwilling to share it with suspicion. The use of open source software should, on a practical face-to-face level, equate to openness in regard to the sharing of knowledge and skills. In practice this means that people share their knowledge, helping when they know and learning when they don’t. Although Lowtech cannot solve the environmental problems caused by the ICT revolution it can, through the creative and dynamic use of what is supposedly trash technology, highlight such issues as e-waste and inbuilt redundancy. It can also serve as a tool with which to work upon your own subjectivity. Lowtech alters the relationship between person and machine, when something breaks down it is up to you to either solve the problem yourself or find someone else who knows the solution, whether that be on the Internet or the other side of the room. You cannot take it back to the shop and expect them to solve your problems for you. Within an age such as ours there is much to be said for such an antidote.

REFERENCES